Technologies used

Alteryx

Alteryx

AWS S3 Bucket

AWS S3 Bucket

AWS EMR

AWS EMR

AWS Sagemaker

AWS Sagemaker

Apache Spark

Apache Spark

Sci-kit Learn

Sci-kit Learn

Tensorflow

Tensorflow

Retail & CPG

Reactivation of inactive customers for a multinational retail company

Impact by the number

 

33%

reduction in customer inactivity

~200

days of customer inactivity saved

Retail & CPG

Reactivation of inactive customers for a multinational retail company

The challenge

A large multinational retail company was faced with the challenge of declining customer activity in their retail stores. They sought to reduce their overall turnover rate, and for this, they needed to know the likelihood of each of their customers churning. With this information, they could focus their efforts on trying to re-engage with dormant customers who could be reactivated.

The solution

To assist with this, Addo built and implemented an AI-based engine that could predict the overall churn rate of our client’s entire customer base. Once equipped with this information, our customer was able to make a targeted effort in trying to market to those customers who were more likely to start buying from them again. In this way, dormant customers who had stopped buying from our client, were reactivated, leading to increased sales and a better revenue stream.

We built this solution using data about customer history, purchase patterns and tenure of interaction with our client. The AI engine was to define and attach certain criteria with every customer, and used this information in its churn prediction process. Once customers who could be reactivated were identified, and their engagement levels with our client fell below desired thresholds, our AI engine would segment and highlight them to our client This allowed our client to market to those segments and customers in a personalized way, and to target them for retention. 

To build this solution, a pool of highly qualified Machine Learning Engineers, Integration Engineers, Cloud Engineers and Solutions Architects were engaged.

AI techniques: Survival Analysis algorithms (Kaplan Meier Curve, Cox proportional hazards)

The results

  • Better prediction of customer churn rate
  • Better customer retention and engagement
  • Increased revenue and reduced costs
Looking for a
similar project?
Let's talk

Related case studies

Retail & CPG

Demand forecasting for a leading travel retailer

Read more

Retail & CPG

Marketing optimisation to increase ROI for a multinational retail company

Read more